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Chaotic advection and transport in helical Beltrami flows:
A Hamiltonian system with anomalous diffusion
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The chaotic advection of a passive scalar in a three-dimensional flow is investigated. The stationary velocity
field of the incompressible fluid possesses a helical symmetry and satisfies the Beltrami property, and is then
an exact solution to the Euler equations. The streamlines of the fluid form a stochastic web which determines
the transport properties. In this cylindrical geometry the origin plays a special role. For pure 2p/n symmetry
(n is an integer! the particles can return to the origin in finite time, as can be demonstrated analytically. The
statistical behavior of the passive scalar is studied by using numerical integrations of the motion equations.
Subdiffusive behavior is found, the radial variance growing in time with a characteristic exponent of'0.52
~this exponent is 1 for normal Brownian diffusion!. The return probability is also computed. A random walk
model, assuming absorption and waiting times proportional to the distance from the origin, appropriately
describes the observed features of the particle statistics. In the continuous limit this model gives a diffusion
equation with memory effects, highlighting the non-Markovian character of the dynamical system.
@S1063-651X~97!08605-4#

PACS number~s!: 47.52.1j, 47.27.Qb, 05.40.1j
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I. INTRODUCTION

The advection in a fluid, that is, the motion of passi
particles which essentially follow the fluid streamlines~they
are not relevant in determining the flow velocity!, as pollut-
ants which disseminate in the atmosphere, or colorants m
ing in water, can be studied from a statistical point of vie
assuming, for instance, somea priori probability distribution
of the velocity field or, alternatively, from a dynamical sy
tem point of view, using the concept of chaos of the veloc
streamlines. The dynamical system approach leads to the
tion of ‘‘Lagrangian turbulence;’’ the streamlines associa
with a laminar velocity field may be stochastic, filling
dense region of space. In this case the transport prope
are inferreda posteriori, directly from the properties of the
particle trajectories.

The transport of a passive scalar in a stationary thr
dimensional~3D! flow, where the given velocity field satis
fies Euler equations of an incompressible fluid, is largely
open problem. Indeed, since the pioneering work by He´non
@1# on the Arnold-Beltrami-Childress~ABC! flow @2#, which
can be considered the starting point of the modern dynam
system approach, it is known that the streamlines of lam
velocity fields can have a complicated topology and dens
fill a 3D region. The stochasticity of streamlines drastica
modifies the transport properties of the flow; the particl
being frozen, diffuse following the streamlines. Chaotic a
vection was mostly studied for two-dimensional unstation
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flows using the notions issued from the theory of Ham
tonian dynamical systems@3–5#; see@6# for a review. Three-
dimensional flow received much less attention, in part
cause the mathematical theory of the related Hamilton
system is more complicated@7#. An exception is the study o
theABC flow and its relation to the dynamo effect@8#, and
the quasisymmetric steady state flows investigated
Zaslavskyet al. @9,10#.

In this paper we analyze the chaotic properties of
streamlines associated with a helical Beltrami flow propo
in @9#. The interest in Beltrami flows is multiple: they ar
exact, stationary solutions of Euler equations, and are c
acterized by a vorticity proportional to the velocity, the
having a nonvanishing helicity. This property of nonvanis
ing helicity is essential in order to have a nontrivial topolo
of the streamlines; otherwise, the existence of an additio
constant of motion~resulting from the Bernoulli theorem!
ensures the integrability of the Hamiltonian equation of m
tion of the advected particle. Moreover, they are analog
to the force-free magnetic field configurations often enco
tered in magnetohydrodynamical problems. In particu
they are relevant for modeling the generation of a magn
field, the fast dynamo effect, from a dynamical point of vie
Finally, Beltrami flows satisfy a variational principle suc
that the energy is extremal for a given value of the helici
and then are thought to be relevant configurations even
turbulent state@11#.

One important property of quasisymmetric velocity field
forming a stochastic web, is their variety of diffusion r
gimes, which are not limited to the normal diffusion of
Brownian motion@12,13#. Subdiffusive and supradiffusive
behavior is also found for the transport of a passive scala
complex velocity fields, as, for instance, in 2D turbulen
where coherent structures dominate the large scales of
e
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flow @4,5#. Although the separatrices of the unperturb
stream function~or the associated Hamiltonian! form a com-
plex lattice, no singularities of the velocity field are prese
The situation changes in cylindrical geometry, where the
gin might become a singular point of the flow. Therefore,
stochastic behavior of the system may depend on the ac
region of space explored by the particles, the long time e
lution depending on the topology of the streamlines near
origin. This is precisely the situation we study in the pres
work. Our purpose is to give a phenomenological descript
of the advection, using numerical simulations, and to exp
the salient observed features by analytical developments

Anomalous diffusion in Hamiltonian systems is the su
ject of extensive studies. In general, the transport is
scribed by local equations of the Fokker-Planck type@14#,
where the diffusion coefficient may differ from the quasili
ear one@15,16#, in this case the standard deviation of t
momentum grows as the square root of time~as in the
Brownian random walk!. In the ABC flow and in Beltrami
flows, the critical exponents~characterizing the first mo
ments of the particle distribution function! are different from
that of the normal diffusion, and were described by a~local!
Fokker-Planck equation with fractional derivatives@13#. In
this paper we show that non-Markovian effects may also
important, leading to nonlocal~in time! diffusion equations.
The inclusion of memory effects allows us to describe
observed anomalous critical exponents.

In Sec. II we state the basic equations defining the fl
and particle motion. In Sec. III we describe the stocha
web and analyze the structure of the streamlines near
origin. In Sec. IV, using numerical simulations, we study t
statistical and transport properties of the system. A prob
listic model is presented in Sec. V, which assimilates
motion of the particles to a random walk on the stocha
web. Finally, in Sec. VI we present the conclusions.

II. FLUID MODEL AND ADVECTION EQUATIONS

Consider an incompressible and stationary fluid, a so
tion of the 3D-Euler equations, and denote, respectiv
p,r,v, the pressure, the density, and the velocity field of
fluid. The Euler equations are written

v3v5“F, ~2.1!

wherev5“3v is the vorticity, and the potentialF is de-
fined by

F5
p

r
1
v2

2
. ~2.2!

In the spatial regions wherev3vÞ0, it follows that the
potential is a first integral of the motion~Bernoulli theorem!.
Therefore, the streamlines are governed and labeled by
potential values, via Eq.~2.2!. If the fluid possesses the Be
trami property, that is, if the vorticity is parallel to the ve
locity, viv, the constant of motion degenerates, the poten
being constant over all the space, and the streamlines ar
longer labeled byF. This is the reason by which the Be
trami flows may produce chaotic streamlines, called ‘‘L
grangian turbulence.’’ It is worth noting that the Beltram
.
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condition implies that Eq.~2.1! is an identity which does no
give any information on the topology of the streamlines.

A classical way to construct a three-dimensional Beltra
flow is to first search a velocity field depending on only tw
spatial coordinates, and then to add a ‘‘perturbation,’’
cluding the third coordinates@10#. When the velocity field
depends on two coordinates, one can introduce a cur
function and directly solve a linear partial differential equ
tion for this function~a Hemholtz equation in two dimen
sions!. The perturbation may be added because of the line
ity of the Beltrami equation. This perturbation must satis
the divergence-free condition and the Beltrami constra
We note that the two-dimensional equations for the veloc
streamlines~defined by a constant value of the current fun
tion! can be put in Hamiltonian form.

Specific examples of Beltrami flows are theABCflow and
the quasiperiodic flows, extensively studied by numeri
simulations~see Ref.@10# for an account of the literature o
this subject!. These systems, where the unperturbed velo
field has a Cartesian geometry, are characterized by a Ha
tonian whose separatrices form a regular lattice in the pl
~called a ‘‘web’’!, invariant by translation in two orthogona
directions of the space. Zaslavskiet al. @10# introduced a
Beltrami flow related to a Hamiltonian system having cyli
drical geometry. In the cylindrical geometry the special ro
played by the origin~symmetry axis of the flow defined b
r50) and the nonuniformity of the web can have a sign
cant influence on the properties of the motion of advec
particles and their transport.

Let us denote (r ,f,z) the cylindrical coordinates of a
point in the 3D space. We also introduce the stream func
c(r ,f) to describe the basic~unperturbed! two-dimensional
flow. The general 3D velocity fieldv5(v r ,vf ,vz) of the
flow is then defined by

v r52
1

r

]c

]f
1

e

r
sin~z!, ~2.3a!

vf5
]c

]r
2

e

r
cos~z!, ~2.3b!

vz5c, ~2.3c!

wherec5c(r ,f) satisfies the Helmholtz equation to ensu
the Beltrami property

Dc1c50, ~2.4!

and e, which is an arbitrary parameter, will be consider
small in the following. Thee terms perturb the basic two
dimensional flow. Units and dimensions were chosen in s
a way that the density isr51 and the characteristic time an
space scales are unity. It is worth noting that this flow
periodic inz, the velocity field being a function of sin(z) and
cos(z). Moreover, it is easy to verify that, with the perturb
tion chosen in this way, the Beltrami condition is valid fo
the whole 3D flow, with the vorticity proportional to th
velocityv52v. Whene50, the system is completely inte
grable,c ~and thenvz) becomes in this case a constant
motion. The set of equations for the streamlines can be w
ten in Hamiltonian form,
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55 5589CHAOTIC ADVECTION AND TRANSPORT IN HELICAL . . .
dr

dz
5
1

c S 2
1

r

]H

]f D , ~2.5a!

r
df

dz
5
1

c

]H

]r
, ~2.5b!

where

H5c~r ,f!2e@f sin~z!1 ln~r !cos~z!#. ~2.6!

The solution of Eq.~2.4! is the function

c~r ,f!5(
n

CnJn~r !cos~nf!, ~2.7!

whereCn are constant coefficients normally determined
boundary conditions, andJn(r ) design the Bessel function
of ordern. This gives a multipolar expansion of the veloci
field. It is interesting to reduce the study to particular heli
flows with a given rotational symmetry. This is done by r
taining only one term of the multipolar expansion. Indeed,
will become clear later, when the system is slightly p
turbed, because of the geometry of the separatrices of
basic 2D flow having a rotational symmetry, a radial tran
port having interesting statistical properties may be
served. In this respect, the particular choice of a term in
sum~2.7! is not relevant if the discrete circular symmetry
conserved. Therefore, we retain only the term correspond
to n53 in Eq.~2.7!, which possess a rotational symmetry
the planez5const, by the angle 2p/3,

c5J3~r !cos~3f!. ~2.8!

The motion of an advected particle in such a flow is,
definition, given by

dr

dt
5v~r !, ~2.9!

where r designates the position of the particle, this mea
that the motion of the particle is uniquely determined by
fluid velocity. Whene is zero, the projection of the trajector
of the particle, on the plane (r ,f), follows a line of level of
the stream function, while its axial velocity is constant a
equal toc. The lines of level are represented in Fig. 1.
straightforward computation shows that the separatrices
sociated withc are the level lines defined by

c~r ,f!5J3~r !cos~3f!50. ~2.10!

They correspond to the lines of Fig. 1 possessing inters
tions. The intersections of separatrices are the hyperb
points ofc. We observe that the separatrices form a regu
web and delimit cells. The center of any cell is an ellip
point. In a pair of neighboring cells, the flow is rotating
opposite directions. The points on the symmetry axis are
fixed points of the 2D flow and, of course, a particle initia
located at the axis, can never leave it. This is no longer
case when the perturbation is added. WheneÞ0 the advec-
tion becomes stochastic due to the destruction of sep
trices.
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III. STOCHASTIC LAYER AND RETURN TO THE ORIGIN

Let us recall the form of the Hamiltonian system,

H5H0~r ,f!1eH1~r ,f,z!, ~3.1!

whereH05c is the integrable part of the Hamiltonian. Th
separatrices ofH0 @see Eq.~2.10!# are defined in the plane b
J3(r n)50, n51,2, . . . , which are circles of radiusr n , and
radial linesf5(2k11)p/6, k51,2, . . . . In destroying the
separatrices ofH0, the perturbationeH1 forms stochastic
layers for any value of the small parametere. The structure
of the stochastic layer has been thoroughly studied for ‘‘n
mal’’ Hamiltonians, having a kinetic energy term@17#. In the
present system, where the phase space is directly the
figuration space, the situation is different because the c
acteristic time scale associated withz(t) is itself determined
by H0. Instead of an exponentially thin stochastic layer~as,
for example, for the perturbed pendulum!, here the width is
at least proportional toe @9# ~neglecting logarithmic terms!.

The structure of the stochastic layer is illustrated in Fig.
by a Poincare´ section of the advected particle positions. W
compute, using Eqs.~2.9! and ~2.3!, the trajectories of
N52048 particles, initially put around the symmetry ax
~and, therefore, near the separatrices!, during t525 000 time
units, and a value ofe50.2. Each time a particle crosses th
planez50 ~mod 2p), we plot its position. We observe tha
they are no longer trapped around the center~as would be the
case if e were equal to zero! and they wrap the surface
generated byJ3(r )50 ~cylinders! and cos(3f)50 ~half-
planes! in the space (r ,f,z); that is to say, that stochasti
layers are developed around the separatrices ofH0. These
separatrices being topologically connected, the stocha
layers are also connected and form the stochastic web sh
in the figure. It can be noted that the angular distance
tween stochastic layers belonging to the separatr
f5const increases with the radial distance. This is a num
cal artifact due to a poor number of particle crossings
these regions, not large enough to fulfill the layers.

To make clear how the advected particles cross the s
ratrices, we follow one trajectory and plot its projection o

FIG. 1. Contour levels of the stream functionc in Cartesian
coordinates (x,y) showing the web of separatrices and some pe
odic orbits.
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the planez50 in Fig. 3. We can see, in this figure, th
sometimes the particle appears to be trapped in one cell
stays turning in it before escaping and changing to ano
cell. In Fig. 3 we also show the radial and axial coordina
r5r (t) andz5z(t). When the particle is trapped in a ce
the motion is almost integrable andż is nearly constant; in
contrast, when the particle is wandering from one cell
another, ż undergoes drastic changes correlated with
separatrix crossings. The way the particles cross the sep
trix strongly depends on its initial position; an arbitrary sm
perturbation may lead to a completely different long tim
behavior of the orbit. In this sense, one is tempted to ass
late the successive crossings as random, in which case
trajectory on the web becomes similar to a random walk

The case of a particle initially located near an ellip
point is trivial as a consequence of the Kolmogorov-Arno
Moser theorem, which demonstrates the existence of clo
surfaces in the neighborhood of these points. Fore small
enough, the particle orbit is quasiperiodic and confined i
horizontal plane, as if the perturbation were invisible to
Such a particle can never cross the web. The regions
rounding an elliptic point are said to be quasi-integrab
These regions are themselves separated and delimited
cell of the web. Of course, whene becomes large enough
the quasi-integrable regions disappear and the web beco
the whole space. This regime is out of the scope of
present paper.

An interesting feature of the system is the possibility,
the particles advected along the web, of being trapped
finite time on the axisr50. In fact, this behavior is alread
present in Fig. 3, where the particle started atr'9.76 and
f'1.57 and reached the origin after a timet'12 265.

We analyze the evolution of such particles whose traj
tories reach at some time, the neighborhood of the a
More precisely, we want to show that in such a case, if
value ofz is sufficiently close top/2 ~mod 2p), the particle
trajectory collapses in a finite time to the axisr50. Such a
behavior is essentially related to the web geometry. In f

FIG. 2. Poincare´ sectionz50 mod 2p, of N52048 particles
initially at the originr (0)50, showing the structure of the stocha
tic layers. Circles of radius 40, 60, and 80 as well as radial li
with angle 2kp/6 (k50,1, . . . ,5) areplotted. Parameters ar
e50.2, final timet f525 000.
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when the particle falls in the first cylinder~the one generated
by the first circular separatrix!, following a radial separatrix,
it will arrive close to the axis. At this point, according to th
value of z, the particle can either go away again taking
ascending radial separatrix or, as we will now show, c
lapses tor50.

Let us assume that the initial radial position of the parti
satisfies (H): r 0!e1/3. Given a set of initial conditions
(r 0 ,f0 ,z052p/21u0), with uu0u!1, under the hypothesis
(H), we demonstrate that collapse must occur. Indeed, n
the origin, the advection equations may be written, using
analytic expansion,

16r ṙ5@r 31o~r 3!#sin~3f!216e cosu, ~3.2a!

16r 2ḟ5@r 31o~r 3!#cos~3f!216e sinu, ~3.2b!

48u̇5@r 31o~r 3!#cos~3f!, ~3.2c!

where we put z52p/21u. Clearly, (H) insures that
ṙ 0,0. Assume the particle returns to the radial positionr 0

s

FIG. 3. Trajectory of one particle showing the separatrix cro
ings.~a! Projection on the planez50. Circles of radius 10, 20, and
30 as well as radial lines with angle 2kp/6 (k50,1, . . . ,5) are
plotted;~b! radial coordinate as a function of timer5r (t); ~c! axial
coordinate as a function of timez5z(t). Parameters aree50.2,
t f512 265,r 059.76, andf051.57.
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55 5591CHAOTIC ADVECTION AND TRANSPORT IN HELICAL . . .
and let us notet̂ ( t̂.0) the first time the particle reaches
By definition, as long ast is less thant̂ , r (t) is less than
r 0, and

ṙ ~ t̂ !>0. ~3.3!

Let us definet5(e cosu0)
21r0

2, which will appear to be a
typical falling time of the particle. Using Eq.~3.2c!, we ob-
tain that

;t< t̂ , uu~ t !2u0u<
r 0
31o~r 0

3!

48
t. ~3.4!

It implies that t̂>2t; otherwise, we would ge
uu( t̂ )2u0u!r 0

2/24<1, and using Eq.~3.2a!, we would con-
tradict Eq. ~3.3!. Equations~3.4! and ~3.2a! immediately
give,

;t<2t, r ~ t !;a~ t !5Ar 0222e cosu0t. ~3.5!

It is easy to verify thata(t)50 and ȧ(t)52`. There-
fore, the particle reaches the axisr50 in a finite time~of the
order of the falling timet) with an infinite speed. Of course
the particle never returns tor 0.

The way the particle reaches the axis depends on the
tial conditions. If r 0

3!u0, the particle spirals down, accord
ing to the formulas f5tanu0lnr(t)/r01f0 and
limr→0r ḟ5`. This is the case drawn in Fig. 4. If, on th
contrary, r 0

3@u0, the spiral ends at a particular directio
f5f(t).

Besides, it is clear that such a behavior does not dep
on the value ofn ~the order of the symmetry!. More gener-
ally the hypothesis (H), for generaln, would be

r 0!e1/n,

FIG. 4. Collapse on the axis of a particle. Solid line: trajecto
of the particle projected on the planez50 in cylindrical coordi-
nates. The initial conditions are (r 0 ,f0 ,z0)5(1,p/2,p
2p/21u052p/6). Circles of radius 0.2, 0.4, 0.6, 0.8, and 1
well as radial lines with angle 2kp/6 (k50,1, . . . ,5) areplotted.
Dashed line: asymptotic computation of the trajectory us
f531/2ln(r)1p/2. Parameter ise50.2.
i-

nd

which express the fact that the biggest isn and the weakest is
the hypothesis (H) for a givene value.

One may think that the return of the particle to the orig
violates the divergence-free condition on the velocity fie
To clarify this point, let us consider the 2D radial veloci
field

v52
a

r
er ,

which represents, according to the sign ofa, the flow gener-
ated by a source or a sink. This velocity field is manifes
divergence-free everywhere but at the pointr50. In the he-
lical Beltrami flow, the pointr50 is replaced by an axis
which can be considered alternatively as a sink or a sou
according to the values of sin(z). The physical situation is
different in the case of magnetic field lines, although t
basic equations“•B50 and“3B52B are similar to those
satisfied by the velocity fieldv, because of the inexistence o
magnetic monopoles: it is impossible to construct singu
sources and sinks of the magnetic field.

IV. RETURN TO ORIGIN STATISTICS

The chaotic nature of the particle trajectories allows us
describe the system at two different levels: a microsco
level, related to the geometrical and dynamical properties
the trajectories themselves which determine the advec
properties~fractal dimensions, Lyapunov exponents@6#!; and
a macroscopic level, related to quantities averaged over a
of trajectories, such as diffusion coefficients or probabil
distributions of the particle positions, which determine t
transport properties of the system. Although the proof of
existence of a probability distribution, and of robust mac
scopic quantities from the dynamics, is a difficult proble
only in a few special models can this be done rigorously
numerical approach is useful in order to investigate the
eraged properties of the system. However, it is necessar
test the statistical stability of the macroscopic quantities,
instance, verifying that the macroscopic properties are in
pendent of the details of the particle initial positions.

We showed in the preceding section that the singularity
the flow at the symmetry axis influences the neighbor
particles trajectories, leading to collapse in finite time.
particular, one may ask if the long time properties of t
transport are also dominated by the cylindrical geometry
the stochastic web, for instance, if the totality of particles
absorbed at the origin~in a finite or infinite time!. In order to
characterize the role of this singularity on the transport,
define the probabilityF(t;e), for a particle starting at the
origin, not to be returned before a given timet. This quantity
is directly obtained numerically by computing the number
particlesN(t) present in the system at timet with respect to
the total number of particlesN @when this number is large
enough,N(t)/N→F#.

A distribution of particles is initially given aroundr50
and sin(z)511, where the flow is essentially of the sourc
type. Then, the trajectories are followed, and if a given p
ticle reaches the origin~a sink in the symmetry axis!, its
return time is computed. The advantage of initializing t
system in such a way is that the long time evolution is ind

g
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pendent of the initial state and the return to the origin proc
is properly characterized. This would not be the case if
particles were started, for example, near the first circu
separatrix. In such a case it is difficult to define a sta
statistical quantity describing the process of concentra
near the origin, which may depend on the initial distance

In Fig. 5 we show the fraction of particlesF(t) not re-
turned to the origin as a function of time in a log-log plo
computed from 2048 trajectories ande50.2. We observe
that, initially, F(t) is like a staircase function: due to th
strong correlation of neighboring particle trajectories, the
particles reach the origin in clusters. At later tim
(t.1664), the functionF(t) becomes smoother, and slow
decreases fromF(1664)'0.39, to a value ofF equal to
0.15 at the final computed time (t525 000). For intermedi-
ate times (1664,t,11 900)F(t);t20.52 up to the fluctua-
tions and the system behaves almost as a Brownian mo
with F(t);t21/2. This may be explained by the fact that th
particles explored essentially the origin neighborhood, a
long time effects depending on the global geometry of
web cannot yet be manifested. At later times, a change
regime appears, and we observe that the slope of the cur
Fig. 5 tends to decrease. In the range 20 000,t,25 000, the
average exponent is about 0.40. The long time behavio
F(t) deviates from a Brownian law, but due to the sm
number of particles remaining at such later times, the sta
tics become unreliable in determining the behavior. We n
that F(t) monotonically decreases, but no asymptotic va
strictly larger than zero is reached. If this were the case
would conclude that a fraction of particles may escape fr
the axis of symmetry, but the numerical simulations are
able to provide an answer to this question.

We verified numerically thate plays, in fact, the role of a
normalization time parameter. An appropriate scaling of
time axis in the formt→g(e)t lets the distribution probabil-
ity F(t) be invariant„F(t;e)5F@g(e)t#, whereg is a de-

FIG. 5. Temporal evolution of the return probability distributio
in logarithmic scales. The average slope of the curve in the in
mediate regime, 1664<t<11 900~between the vertical linesa and
b), is 20.52 and is represented by the straight line in the plot.
times 20 000<t<25 000~between the vertical linesc andd), the
slope is about 20.40. Parameters aree50.2, N52048,
t f525 000.
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creasing function ofe…. Since the particle transport scalin
properties are essentially determined by the topolog
structure of the web, this behavior demonstrates at least
statistical sense that the stochastic web topology is fixed
the conditione.0. This behavior is similar to the transpo
in Hamiltonian systems@17,16#, for example, in the standar
map, where the diffusion law is the same for different valu
of the stochastic parameter, and only the diffusion coeffici
depends on the strength of the perturbation.

The departure from the normal Brownian motion may
further investigated using the long time behavior of the me
radial positionm(t) and its standard deviations(t). More-
over, these quantities, which are the first two moments of
radial probability distribution, describe the dispersion of
initially concentrated population of particles near the ax
and, in particular, their asymptotics may account for the p
sibility of escaping. The mean and standard deviations fo
system with absorption at the origin are defined by

m~ t !5
1

N~ t ! (
p51

N~ t !

r p~ t !, ~4.1!

s2~ t !5
1

N~ t ! (
p51

N~ t !

@r p
2~ t !2m2~ t !#, ~4.2!

wherer p(t) is the radial position of thepth particle at time
t not returned to the origin. In this waym(t) ands(t) reflect
the actual particle diffusion, and the measure is not biased
the growing number of particles absorbed atr50.

We used the same kind of initial conditions to measu
m(t) ands(t) as we do for measuringF(t). After a short
transitory regime, an asymptotic regime sets in, with sta
statistical properties. We observe in Fig. 6, whe
ln(m)/ln(t) and ln(s)/ln(t) are plotted as functions oft to
determine the exponents, that the radial mean and stan
deviations follow power laws at long times with exponen
about 1/3 and 1/4, respectively,

r-

r

FIG. 6. Temporal evolution of the radial mean~top! and stan-
dard deviation~bottom! of the Beltrami flow. Top: ln(m)/ln(t) as a
function of time. Bottom: ln(s)/ln(t) as a function of time. Param
eters aree50.2,N52048,t f525 000.
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m~ t !;t0.35, ~4.3a!

s~ t !;t0.26. ~4.3b!

The temporal evolution ofs(t) is almost independent of th
actual value ofe andm(t) is an increasing function ofe.
However, asymptotically, the characteristic exponents (0
and 0.26) do not depend one, which is clearly consisten
with the scaling property ofF.

We observe that the mean exponent is larger than
standard deviation exponent, suggesting that the distribu
of particles is advected far from the origin while slow
spreading. The relative small standard deviation expon
small with respect to the normal diffusion and also to t
radial mean exponent, can be mainly related to two effe
First, the absorption of particles at the origin tends to red
s(t): some of the particles located far from the mean po
tion disappear, diminishing by way of their dispersion. S
ond, the radial structure of the separatrices, and the rel
growth of the cell size with the distance to the origin, co
tribute to the increase of the circulation time of particles
the farther cells. More precisely, we observe, using the
merical integration of trajectories starting at different d
tances from the origin, that the particle’s time to turn arou
a cell is proportional to the radial distance of the cell. T
proportionality coefficienta typically varies between 1.1 an
1.8, depending on how deep the particle orbit is situated
the cell~see Fig. 3!. In a statistical model below, we will tak
a51.4. The geometry of the web imposes, therefore, a w
ing time ~the time necessary to turn around one cell! propor-
tional to the distance, whose main effect is to forbid t
particles to spread out far from the radial mean~the farther
they move, the longer their waiting time is!.

V. RANDOM WALK MODEL

We construct a discrete model, based on an average
thez coordinate, of the particle probability distribution. Th
is justified by the fact thatż is almost constant on large tim
scales, so that the radial trajectory is slightly modified by
z value ~except whenr approaches 0). Therefore, we ju
consider the projection of the trajectories on the (r ,f) plane
and we make the approximation that this projection follo
the geometry generated by the separatrices ofH0. We obtain
a lattice in the plane with lines convergent to the center
concentric circles, the cross points of the separatrices b
the hyperbolic points ofH0 ~2.10!. These hyperbolic points
~except for the closest ones from the axisr50) are regularly
arranged along the radial axis, the distance between two
cessive sets of hyperbolic points~of equal radial distance!
being approximately constant and equal top. Therefore, in
this model, the radial distance is discrete, the unit dista
being the distance between two successive sets of hyper
points.

The simplest model that might reproduce the main f
tures of the dynamical system is one where the particles
random walkers on the web, with probability 1/3 of turnin
left or right or continuing straight on each time they arrive
a hyperbolic point; the time spent going from one hyperbo
point to another one is constant and independent of t
position on the web. Let us analyze the radial properties
5
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this model. We assume that a test particle leaves the cent
the web and then we compute the probability of the fi
return to the origin.

It is worth noting that when a particle arrives for the fir
time at a radial distancer 0 ~it turns around the circle of
radius r 0), the probability that the particle stays at such
distance for (i11) steps is (2/3)2(1/3)i , and the waiting time
is

T̄5S 23D
2

(
i50

`

~ i11!S 13D
i

51. ~5.1!

Let us denoteP21 , the probability of the particle arriv-
ing at a hyperbolic point from the bottom moving up,P11

the one to move up coming from the top, and similar defi
tions for P12 and P22 . It is easy to verify@18# that the
transition matrix probabilityP is

S P22 P21

P12 P11
D 5S 2

3

1

3

1

3

2

3

D , ~5.2!

and in the limitn→`,

Pn'
1

2n S 1 1

1 1D . ~5.3!

This means that for long times, such a model is, in fa
equivalent to a classical random walk on a line~the radial
axis! with an absorbing barrier inr50, a constant waiting
time ~equal to 1), and a probability 1/2 of going up or dow
independently, to the radial position. Therefore, we obtai
radial mean and standard deviation, both increasing asy
totically ast1/2. This result is incompatible with the charac
teristic exponents of the Beltrami flow~4.3!.

The main reason this simple model fails is that it does
take into account that the time spent in a cell is appro
mately, as we already indicated, proportional to the dista
of the cell from the centerT5T(r ). In the frame of a dis-
crete model,T must be an integer number and we take

T~r !5E~ar !, ~5.4!

whereE(x) denotes the integer part ofx anda'1.4, as we
noted before. After this time, the particle can freely leave t
position with a given probability.

We denote byP(r ,tun), the conditional probability of a
particle being at the radial distancer at timet, knowing that
it is there sincen time units~the last radial transition was a
time t2n). Each time a particle is at a transition time, it h
probabilities p2 ,p0 ,p1 of going up, staying at the sam
radial position again for a timeT(r ) @for p050 the particle
waits exactlyT(r ) at r #, or going down. Timen is therefore
a discrete quantity varying from 0 toT(r ). Finally, we note,
P(r ,t)5P(r ,tu0) in order to simplify the formulas. In term
of probabilities, the dynamics of the discrete model of t
Beltrami flow is defined by

;r>1 ,1<n<T~r !,P~r ,tun!5P~r ,t21un21!, ~5.5a!
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;r>2 ,P~r ,t !5p2P„r21,t21uT~r21!…

1p0P„r ,t21uT~r !…

1p1P„r11,t21uT~r11!…, ~5.5b!

with

p21p01p151, ~5.5c!

and the absorption condition inr50 ~the boundary condi-
tion! is given by

P~0,t !5p1P„1,t21uT~1!…1P~0,t21!, ~5.5d!

P~1,t !5p0P„1,t21uT~1!…1p1P„2,t21uT~2!…. ~5.5e!

We can now defineG(r ,t) the probability for a particle to be
at the radial distancer at the timet

G~r ,t !5 (
n50

T~r !

P~r ,tun!5 (
n50

T~r !

P~r ,t2n!. ~5.6!

The probability normalization condition is written as

;t>0 ,(
r>0

G~r ,t !51. ~5.7!

To compare with the data of the dynamical system, in
model we concentrate the initial probability distributio
aroundr50 ~at t50). The values ofp2 , p0 , p1 chosen
are 0.4, 0.2, and 0.4, respectively. The probabilit
p2 , p1 are greater thanp0 to reflect the fact that crossing
circular separatrix is more probable than crossing a ra
one, or staying for a long time around the same cell (p0
makes no distinction between these last two processes
which the radial position remains the same!. The trajectories
in the web are essentially composed of radial motions
fixed cones uP@2p/3,p/3#12kp/3, with generally no
more than one rotation in each new cell visited. More s

FIG. 7. Temporal evolution of the radial mean~top! and stan-
dard deviation~bottom! of the discrete probabilistic model. Top
ln(m)/ln(t) as a function of time. Bottom: ln(s)/ln(t) as a function of
time. Parameters are (p1 ,p0 ,p2)5(0.4,0.2,0.4), a51.4,
t f5100 000.
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dom, the particle is either trapped in a cell or has a chang
cone, as is observed in Fig. 3.

To compute the first probability moments~Fig. 7!, we do
not use the statistics over the particle random walks, but
directly integrate the exact probability distribution evolutio
using the algorithm defined by Eqs.~5.5!. Although there is
no direct relation between the continuous time scale of
system and the discrete one of the model, we can see in
7 that the characteristic exponents of the mean and the s
dard deviations are in very good agreement with the val
observed in the original dynamical system. The transition
the probabilistic model differs from the one of the Beltram
flow because of its discrete nature, which cannot reprod
the details of the correlations in the absorbing region
served fort<1664. This results in a smoother convergen
to an asymptotic regime. We point out that the approach
the first two moments to this asymptotic regime is similar
both the dynamical and the probabilistic systems.

The model is sensitive to the choice of paramet
p2 , p0 , p1 . However, provided that we takep0 smaller
than p2 and p1 , the asymptotics have similar shapes a
characteristic exponents. For instance, for (p2 ,p0 ,p1)
5(0.5,0,0.5), we observe that the exponent of the stand
deviation is 0.27 and, at the same time, the exponent of
mean is 0.358. On the other hand, the choice of an equip
ability distribution (p2 ,p0 ,p1)5(1/3,1/3,1/3) gives 0.346
and 0.256.

We also computed the return-to-the-origin probabil
12F(t) for the discrete model and found the asympto
behaviorF(t);t21/3. This long time power law implies tha
the probability of a test particle being absorbed in an infin
time, is one. The power law is well defined and extends o
many decades in time. This shows, on the other hand,
the numerical simulations had not fully reached t
asymptotic regime, even if the first two moments of the pro
ability distribution of particles did.

One interesting point is that the model allows us to co
pute the exact probability distribution at any time, in contra
to the dynamical system which is limited by the number

FIG. 8. Radial probability distributionG(r ,t) of the discrete
model for different values of the waiting transition probability
t5100 000. Dashed line:p050; solid line: p051/5; and dotted
line: p051/3. The other transition probabilities arep25p1 .
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particles not absorbed at the axis. In Fig. 8, the probab
distributions are plotted when most of the particles~about
96.5%) are returned to the axis~which corresponds to a tim
equal to 100 000) for different values of the s
(p2 ,p0 ,p1). It is logically observed that when increasin
p0, the mean and the standard deviations both decre
More important, the non-Gaussian nature of the stocha
process appears clearly in the behavior of the probab
distribution for large values ofr . For a Gaussian proces
even with absorption, one expects a decay of the probab
asO@exp(2ar2)# ~the time is fixed!; yet we find that for large
r the actual probability decays, first, much more slowly th
a Gaussian, and then changes progressively to a regim
decay faster than a Gaussian for rare events.

It is interesting to investigate the continuous limit of th
discrete model in order to underscore the non-Markovian
ture of the stochastic process. We make the simplifying
sumption that (p2 ,p0 ,p1)5(1/2,0,1/2), taking advantag
of the weak dependence on the shape of the probability
tribution and on the values of the characteristic exponent
the discrete model. Let us denotet the unit of time anda the
unit of length; in the continuous limit both tend to zero. W
define the function

f ~r ,t;a,t!5P„r1a,t2t2T~r1a!…2P~r ,t2t!,
~5.8!

and with the help of Eqs.~5.5a! and ~5.5b!, we obtain

2@P~r ,t !2P~r ,t2t!#5 f ~r ,t;a,t!1 f ~r ,t;2a,t!.
~5.9!

In the limit a and t tending to zero, a Taylor developme
gives

2t
]

]t
P~r ,t !1O~t2!5a2

]2

]a2
f ~r ,t;0,t!1O~a3!.

~5.10!

To get a nontrivial limit, we puta2/2t5D5const and using
~5.8! we obtain

]

]t
P~r ,t !5D

]2

]r 2
@P„r ,t2T~r !…#, r.0 . ~5.11!

We obtain a non-Markovian stochastic process satisfyin
nonlocal diffusion equation, withD being the diffusion co-
efficient, with memory effects depending on the position
is now straightforward to obtain the continuous limit of E
~5.6! andG is then given by

G~r ,t !5E
t2T~r !

t

P~r ,u!du. ~5.12!

In fact, P andG are linked by a local relation,

]

]t
P~r ,t !2D

]2

]r 2
P~r ,t !52D

]3

]r 2]t
G~r ,t !, r.0 .

~5.13!

The right hand side of this last equation takes into acco
the non-Markovian part of the diffusion process and cor
sponds to the local temporal variation of the diffusion
y
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G. To be complete, we need to add absorption and norm
ization conditions. We denoteP0(t), the probability of the
particle being atr50 at the timet. The absorption condition
is written,

d

dt
P0~ t !5

1

2
lim
r→0

G~r ,t !, ~5.14!

and the normalization condition becomes

P0~ t !1E
0

1`

G~r ,t !dr51 . ~5.15!

We note that the derivation of the continuous equation
independent of the precise form ofT(r ).

VI. CONCLUSIONS

In this paper we studied the advection and transport of
particles in a helical Beltrami flow and showed the stocha
nature of its streamlines. We analytically demonstrate th
under certain conditions, there is a collapse to the ori
where the particles may be absorbed. This effect has im
tant consequences in the statistical properties of the sys
and, in particular, the special topology of the stochastic w
determines the behavior of the transport. We introduced s
eral quantities to describe this transport, such as the re
probability distribution and the first moments, mean a
standard deviations of the radial probability distribution. N
merical integration of the trajectories allowed us to show t
the transport is subdiffusive and that the long time behav
of the return probability distribution can be associated wit
non-Gaussian random process. In particular, we obtai
anomalous exponents for the power laws associated
both the mean and the standard deviations.

In order to verify these results, we proposed a discr
probabilistic model based on a random walk on the sep
trix lattice with waiting times proportional to the distance

FIG. 9. Poincare´ sectionz50 mod 2p, of N51024 particles
initially located around one separatrix, showing the structure of
stochastic layers for a Beltrami flow having a monopolar contrib
tion withC051. Circles of radius 3, 6, and 9 as well as radial lin
with angle 2kp/6 (k50,1, . . . ,5) areplotted. Parameters ar
e50.1, final timet f51000.
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the origin. We demonstrated that taking this waiting tim
constant does not suffice to reproduce the Beltrami flow,
that, in fact, this case reduces to a normal Gaussian proc
The model turned out to be, in spite of its relative simplici
complete enough to explain the observed phenomenolog
the transport in the system.

Finally, we derived the continuous limit of the discre
probabilistic model and found that it reduces to a nonlo
diffusion equation with unsteady boundary conditions. T
model has interesting properties and can be used as an
ample of the non-Markovian stochastic process, with the
vantage that its discrete version is known and easily com
able numerically.

The symmetry we choose for the helical Beltrami flo
with only one Bessel function~in our case the one of orde
3!, is fundamental in determining the behavior of the syste
It is precisely this~discrete! cylindrical symmetry which is
essential in the absorption process. To illustrate this point
computed the Poincare´ section~Fig. 9! of a helical Beltrami
h.
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e

flow having two components: the Bessel of order 3 plus
monopolar contribution~a Bessel of order 0!. The monopolar
term completely modify the geometry of the stochastic w
in particular, eliminating the separatrices converging tow
the origin. One consequence of the topological change is
the transport becomes essentially in the angular direc
rather than in the radial one.
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