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Chaotic advection and transport in helical Beltrami flows:
A Hamiltonian system with anomalous diffusion

O. Agullo and A. D. Verga
Institut de Recherche sur les Rimmees Hors Equilibre, 12, avenue Geral Leclerc, F-13003 Marseille Cedex, France

G. M. Zaslavsky
Courant Institute of Mathematical Sciences and Department of Physics, New York University, New York, New York 10012
(Received 8 October 1996; revised manuscript received 17 January 1997

The chaotic advection of a passive scalar in a three-dimensional flow is investigated. The stationary velocity
field of the incompressible fluid possesses a helical symmetry and satisfies the Beltrami property, and is then
an exact solution to the Euler equations. The streamlines of the fluid form a stochastic web which determines
the transport properties. In this cylindrical geometry the origin plays a special role. For pimesgmmetry
(n is an integer the particles can return to the origin in finite time, as can be demonstrated analytically. The
statistical behavior of the passive scalar is studied by using numerical integrations of the motion equations.
Subdiffusive behavior is found, the radial variance growing in time with a characteristic exponerti. 52
(this exponent is 1 for normal Brownian diffusipiThe return probability is also computed. A random walk
model, assuming absorption and waiting times proportional to the distance from the origin, appropriately
describes the observed features of the particle statistics. In the continuous limit this model gives a diffusion
equation with memory effects, highlighting the non-Markovian character of the dynamical system.
[S1063-651%97)08605-4

PACS numbeis): 47.52+j, 47.27.Qb, 05.40k]

I. INTRODUCTION flows using the notions issued from the theory of Hamil-
tonian dynamical system8—5]; see[6] for a review. Three-

The advection in a fluid, that is, the motion of passivedimensional flow received much less attention, in part be-
particles which essentially follow the fluid streamlingsey =~ cause the mathematical theory of the related Hamiltonian
are not relevant in determining the flow velogitas pollut-  system is more complicaté¢d@]. An exception is the study of
ants which disseminate in the atmosphere, or colorants mixhe ABC flow and its relation to the dynamo effef@], and
ing in water, can be studied from a statistical point of view,the quasisymmetric steady state flows investigated by
assuming, for instance, soraepriori probability distribution ~ Zaslavskyet al. [9,10]. . .
of the velocity field or, alternatively, from a dynamical sys- [N this paper we analyze the chaotic properties of the

tem point of view, using the concept of chaos of the Ve|Ocitystreamlines associated with a helical Beltrami flow proposed

streamlines. The dynamical system approach leads to the nBt [9] The interest in Beltrami flows is multiple: they are

tion of “Lagrangian turbulence;” the streamlines associatedg)é,?ecrti'zsgatgonzryvzftliléﬂonsrgf oEr?ifr:a(?qtléaifgs\}e?cr;gitaretﬁgr?r_
with a laminar velocity field may be stochastic, filling a y Y prop Y:

dense reaion of space. In this case the transport broperti having a nonvanishing helicity. This property of nonvanish-
. 9 pace. 1 port prop ?r?g helicity is essential in order to have a nontrivial topology
are _mferregja po_sterlorl directly from the properties of the of the streamlines; otherwise, the existence of an additional
particle trajectories. _ _ _ constant of motion(resulting from the Bernoulli theorem
_ The transport of a passive scalar in a stationary threegngres the integrability of the Hamiltonian equation of mo-
dimensional(3D) flow, where the given velocity field satis- tjon of the advected particle. Moreover, they are analogous
fies Euler equations of an incompressible fluid, is largely ang the force-free magnetic field configurations often encoun-
open problem. Indeed, since the pioneering work byéte  tered in magnetohydrodynamical problems. In particular,
[1] on the Arnold-Beltrami-Childres®ABC) flow [2], which  they are relevant for modeling the generation of a magnetic
can be considered the starting point of the modern dynamicdaield, the fast dynamo effect, from a dynamical point of view.
system approach, it is known that the streamlines of laminaFinally, Beltrami flows satisfy a variational principle such
velocity fields can have a complicated topology and denselyhat the energy is extremal for a given value of the helicity,
fill a 3D region. The stochasticity of streamlines drasticallyand then are thought to be relevant configurations even in a
modifies the transport properties of the flow; the particlesturbulent staté11].
being frozen, diffuse following the streamlines. Chaotic ad- One important property of quasisymmetric velocity fields,
vection was mostly studied for two-dimensional unstationaryforming a stochastic web, is their variety of diffusion re-
gimes, which are not limited to the normal diffusion of a
Brownian motion[12,13. Subdiffusive and supradiffusive

*Electronic address: verga@marius.univ-mrs.fr behavior is also found for the transport of a passive scalar in
fUnité Mixte de Recherche du Centre National de la Rechercheeomplex velocity fields, as, for instance, in 2D turbulence
Scientifique 138, Universited’ Aix-Marseille | et II. where coherent structures dominate the large scales of the
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flow [4,5]. Although the separatrices of the unperturbedcondition implies that E¢(2.1) is an identity which does not
stream functior(or the associated Hamiltonipform a com-  give any information on the topology of the streamlines.
plex lattice, no singularities of the velocity field are present. A classical way to construct a three-dimensional Beltrami
The situation changes in cylindrical geometry, where the oriflow is to first search a velocity field depending on only two
gin might become a singular point of the flow. Therefore, thespatial coordinates, and then to add a “perturbation,” in-
stochastic behavior of the system may depend on the actualuding the third coordinategl0]. When the velocity field
region of space explored by the particles, the long time evodepends on two coordinates, one can introduce a current
lution depending on the topology of the streamlines near théunction and directly solve a linear partial differential equa-
origin. This is precisely the situation we study in the presention for this function(a Hemholtz equation in two dimen-
work. Our purpose is to give a phenomenological descriptiorsiong. The perturbation may be added because of the linear-
of the advection, using numerical simulations, and to explairty of the Beltrami equation. This perturbation must satisfy
the salient observed features by analytical developments. the divergence-free condition and the Beltrami constraint.
Anomalous diffusion in Hamiltonian systems is the sub-We note that the two-dimensional equations for the velocity
ject of extensive studies. In general, the transport is destreamlinegdefined by a constant value of the current func-
scribed by local equations of the Fokker-Planck tyfd], tion) can be put in Hamiltonian form.
where the diffusion coefficient may differ from the quasilin-  Specific examples of Beltrami flows are tABC flow and
ear one[15,16], in this case the standard deviation of thethe quasiperiodic flows, extensively studied by numerical
momentum grows as the square root of tirfes in the simulations(see Ref[10] for an account of the literature on
Brownian random walk In the ABC flow and in Beltrami this subject These systems, where the unperturbed velocity
flows, the critical exponentgcharacterizing the first mo- field has a Cartesian geometry, are characterized by a Hamil-
ments of the particle distribution functipare different from tonian whose separatrices form a regular lattice in the plane
that of the normal diffusion, and were described byozal)  (called a “web”), invariant by translation in two orthogonal
Fokker-Planck equation with fractional derivativek3]. In  directions of the space. Zaslavsét al. [10] introduced a
this paper we show that non-Markovian effects may also b&eltrami flow related to a Hamiltonian system having cylin-
important, leading to nonlocdin time) diffusion equations. drical geometry. In the cylindrical geometry the special role
The inclusion of memory effects allows us to describe theplayed by the originsymmetry axis of the flow defined by
observed anomalous critical exponents. r=0) and the nonuniformity of the web can have a signifi-
In Sec. Il we state the basic equations defining the flowcant influence on the properties of the motion of advected
and particle motion. In Sec. lll we describe the stochastigarticles and their transport.
web and analyze the structure of the streamlines near the Let us denote 1{,¢,z) the cylindrical coordinates of a
origin. In Sec. 1V, using numerical simulations, we study thepoint in the 3D space. We also introduce the stream function
statistical and transport properties of the system. A probabig(r,¢) to describe the basiunperturbeyltwo-dimensional
listic model is presented in Sec. V, which assimilates theflow. The general 3D velocity field=(v,,v,,v,) of the
motion of the particles to a random walk on the stochastidlow is then defined by
web. Finally, in Sec. VI we present the conclusions.

190 €
vr=———l’/[+—sin(z), (2.39
Il. FLUID MODEL AND ADVECTION EQUATIONS rag r
Consider an incompressible and stationary fluid, a solu- P
tion of the 3D-Euler equations, and denote, respectively, U¢:a———cos{z), (2.3b
p,p,V, the pressure, the density, and the velocity field of the rr
fluid. The Euler equations are written
v,= i, (2.30

VX 0=V, @D wherey= i(r, @) satisfies the Helmholtz equation to ensure

wherew=V XV is the vorticity, and the potentiab is de- the Beltrami property

fined by Ay+ =0, (2.4
b= E+ 0_2 2.2 and e, which is an arbitrary parameter, will be considered
p 2 ' small in the following. Thee terms perturb the basic two-

dimensional flow. Units and dimensions were chosen in such
In the spatial regions wherexX w#0, it follows that the a way that the density is=1 and the characteristic time and
potential is a first integral of the motigBernoulli theorem space scales are unity. It is worth noting that this flow is
Therefore, the streamlines are governed and labeled by thegweriodic inz, the velocity field being a function of sig(and
potential values, via Eq2.2). If the fluid possesses the Bel- cosf). Moreover, it is easy to verify that, with the perturba-
trami property, that is, if the vorticity is parallel to the ve- tion chosen in this way, the Beltrami condition is valid for
locity, v||w, the constant of motion degenerates, the potentialhe whole 3D flow, with the vorticity proportional to the
being constant over all the space, and the streamlines are nelocity @= —v. Whene=0, the system is completely inte-
longer labeled byd. This is the reason by which the Bel- grable, ¢ (and thenv,) becomes in this case a constant of
trami flows may produce chaotic streamlines, called “La-motion. The set of equations for the streamlines can be writ-
grangian turbulence.” It is worth noting that the Beltrami ten in Hamiltonian form,
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where . i
H=y(r,¢)— €[ ¢ sin(z) +In(r)cogz)]. (2.6 -2}

The solution of Eq(2.4) is the function il
9 $)=2 Cyly(ricosngy), 2.7 .

whereC,, are constant coefficients normally determined by
boundary conditions, and,(r) design the Bessel functions  FIG. 1. Contour levels of the stream functighin Cartesian

of ordern. This gives a multipolar expansion of the velocity coordinates X,y) showing the web of separatrices and some peri-
field. It is interesting to reduce the study to particular helicalodic orbits.

flows with a given rotational symmetry. This is done by re-

taining only one term of the multipolar expansion. Indeed, asll. STOCHASTIC LAYER AND RETURN TO THE ORIGIN

will become clear later, when the system is slightly per-
turbed, because of the geometry of the separatrices of the
basic 2D flow having a rotational symmetry, a radial trans-
port having interesting statistical properties may be ob-

served. In this respect, the particular choice of a term in the hereH.— o is the intearabl t of the Hamiltonian. Th
sum(2.7) is not relevant if the discrete circular symmetry is whereH,= ¢ Is the integrable part of the Hamiltonian. The

conserved. Therefore, we retain only the term correspondin epara_trices_dﬂo [see Eq(2.10] are defined in the plane by
to n=3 in Eq.(2.7), which possess a rotational symmetry in 93('n) =0, n=1,2,... , which are circles of radius,, and

Let us recall the form of the Hamiltonian system,

H=Hg(r,¢)+ eH(r,¢,2), (3.9

the planez=const, by the angle 2/3 radial lines¢p=(2k+1)w/6, k=1,2, ... . In destroying the
’ ' separatrices oHg, the perturbationeH,; forms stochastic
=J5(r)cog3¢). (2.8  layers for any value of the small parameterThe structure

of the stochastic layer has been thoroughly studied for “nor-
The motion of an advected particle in such a flow is, bymal” Hamiltonians, having a kinetic energy tefi7]. In the
definition, given by present system, where the phase space is directly the con-
figuration space, the situation is different because the char-
r acteristic time scale associated wift) is itself determined
a:v(r), (29 by H,. Instead of an exponentially thin stochastic lays,
for example, for the perturbed pendulyrhere the width is
wherer designates the position of the particle, this meandt least proportional te [9] (neglecting logarithmic terms
that the motion of the particle is uniquely determined by the The structure of the stochastic layer is illustrated in Fig. 2,
fluid velocity. Whene is zero, the projection of the trajectory by @ Poincaresection of the advected particle positions. We
of the particle, on the plane (¢), follows a line of level of compute, using Egs(2.9) and (2.3), the trajectories of
the stream function, while its axial velocity is constant andN= 2048 particles, initially put around the symmetry axis
equal toy. The lines of level are represented in Fig. 1. A (@and, therefore, near the separatrjcesiringt= 25 000 time
straightforward computation shows that the separatrices astnits, and a value of=0.2. Each time a particle crosses the

sociated withys are the level lines defined by planez=0 (mod 2), we plot its position. We observe that
they are no longer trapped around the cefasrwould be the
W(r,¢)=1J5(r)cog3¢)=0. (2.10 case ife were equal to zefoand they wrap the surfaces

generated byJ;(r)=0 (cylinders and cos(®)=0 (half-
They correspond to the lines of Fig. 1 possessing interseg@lanes in the space 1, ¢,z); that is to say, that stochastic
tions. The intersections of separatrices are the hyperbolilayers are developed around the separatricesl pf These
points of ». We observe that the separatrices form a regulaseparatrices being topologically connected, the stochastic
web and delimit cells. The center of any cell is an elliptic layers are also connected and form the stochastic web shown
point. In a pair of neighboring cells, the flow is rotating in in the figure. It can be noted that the angular distance be-
opposite directions. The points on the symmetry axis are alween stochastic layers belonging to the separatrices
fixed points of the 2D flow and, of course, a particle initially ¢=const increases with the radial distance. This is a numeri-
located at the axis, can never leave it. This is no longer theal artifact due to a poor number of particle crossings in
case when the perturbation is added. WhetD the advec- these regions, not large enough to fulfill the layers.
tion becomes stochastic due to the destruction of separa- To make clear how the advected particles cross the sepa-
trices. ratrices, we follow one trajectory and plot its projection on
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FIG. 2. Poincaresectionz=0 mod 2, of N=2048 particles
initially at the originr (0)=0, showing the structure of the stochas-
tic layers. Circles of radius 40, 60, and 80 as well as radial lines
with angle X=#/6 (k=0,1,...,5) areplotted. Parameters are : : ; : A :
€=O.2, fina| timetf=25 000. 0 2000 4000 6000t 8000 10000 12000

the planez=0 in Fig. 3. We can see, in this figure, that
sometimes the particle appears to be trapped in one cell and
stays turning in it before escaping and changing to another
cell. In Fig. 3 we also show the radial and axial coordinates
r=r(t) andz=z(t). When the particle is trapped in a cell,

the motion is almost integrable ardis nearly constant; in 0 2000 4000 6000 8000 10000 12000

contrast, when the particle is wandering from one cell to © '

another,z undergoes drastic changes correlated with the g 3 Trajectory of one particle showing the separatrix cross-

separatrix crossings. The way the particles cross the separgys (g Projection on the plane=0. Circles of radius 10, 20, and
trix strongly depends on its initial position; an arbitrary small 30 as well as radial lines with anglekz/6 (k=0,1,...,5) are
perturbation may lead to a completely different long timepjotted: (b) radial coordinate as a function of tinne=r(t); (c) axial
behavior of the orbit. In this sense, one is tempted to assimicoordinate as a function of time=z(t). Parameters are=0.2,
late the successive crossings as random, in which case thg=12 265,r,=9.76, andg,=1.57.

trajectory on the web becomes similar to a random walk.

The case of a particle initially located near an elliptic yhen the particle falls in the first cylindéthe one generated
point is trivial as a consequence of the Kolmogorov-Arnold-py the first circular separatrixfollowing a radial separatrix,
Moser theorem, which demonstrates the existence of CIOSGIﬂywill arrive close to the axis. At this point, according to the
surfaces in the neighborhood of these points. E@mall  yajye ofz, the particle can either go away again taking an
enough, the particle orbit is quasiperiodic and confined in &scending radial separatrix or, as we will now show, col-
horizontal plane, as if the perturbation were invisible to it. lapses tar =0.

Such a particle can never cross the web. The regions sur-'| et ys assume that the initial radial position of the particle
rounding an elliptic point are said to be quasi-integrable gatisfies H): ro<e’® Given a set of initial conditions
These regions are themselves separated and delimited by(|a0,¢0'20: — 2+ ug), with |ug|<1, under the hypothesis
cell of the web. Of course, whea becomes large enough, (H), we demonstrate that collapse must occur. Indeed, near

the quasi-integrable regions disappear and the web becomggs origin, the advection equations may be written, using an
the whole space. This regime is out of the scope of thgynaytic expansion,

present paper.

An interesting feature of the system is the possibility, for .
the particles advected along the web, of being trapped in a 16rr =[r3+o(r?]sin(3¢)—16e cou,  (3.29
finite time on the axig =0. In fact, this behavior is already
present in Fig. 3, where the particle startedr &9.76 and
¢~1.57 and reached the origin after a titre 12 265.

We analyze the evolution of such particles whose trajec-
tories reach at some time, the neighborhood of the axis. 3 3
More precisely, we want to show that in such a case, if the 48u=[r"+o(r")Jcog3¢), (3.20
value ofz is sufficiently close tor/2 (mod 27), the particle )
trajectory collapses in a finite time to the axis 0. Such a Where we putz=—m/2+u. Clearly, H) insures that
behavior is essentially related to the web geometry. In fact;;<<0. Assume the particle returns to the radial positign

16r2¢=[r3+o0(r%]cog3¢)—16¢ sinu, (3.2b
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1 : : : which express the fact that the biggeshiand the weakest is
the hypothesisHl) for a givene value.
osr S One may think that the return of the particle to the origin
06 : violates the divergence-free condition on the velocity field.
0al./ \ To clarify this point, let us consider the 2D radial velocity
field
0.2y
> 0 v a
-0.2 r er ’
—o4r | which represents, according to the sigragfthe flow gener-
_osf ' 3 ated by a source or a sink. This velocity field is manifestly
divergence-free everywhere but at the paint0. In the he-
o8 lical Beltrami flow, the pointr =0 is replaced by an axis
- Y3 o o5 p which can be considered alternatively as a sink or a source,
x according to the values of si)( The physical situation is

] ) o ] different in the case of magnetic field lines, although the
FIG. 4. Collapse on the axis of a particle. Solid line: trajectory basic equation¥ - B=0 andV X B= — B are similar to those
of the particle projected on the plae=0 in cylindrical coordi-  oicfied by the velocity fielst, because of the inexistence of

nates. The initial conditions are rd,¢q,z0)=(1,7/2,7 . e . .
— /24 Ug= — 7/6). Circles of radius 0.2, 0.4, 0.6, 0.8, and 1 as magnetic mon.opoles. it is |mpo§S|pIe to construct singular
sources and sinks of the magnetic field.

well as radial lines with anglekr/6 (k=0,1,...,5) areplotted.
Dashed line: asymptotic computation of the trajectory using
¢=3Y2n(r)+«/2. Parameter ig=0.2. IV. RETURN TO ORIGIN STATISTICS

A A N . _ The chaotic nature of the particle trajectories allows us to
and let us note (t>0) the first time th? particle reaches it. describe the system at two different levels: a microscopic
By definition, as long a$ is less thart, r(t) is less than |evel, related to the geometrical and dynamical properties of
ro, and the trajectories themselves which determine the advection
. propertieqfractal dimensions, Lyapunov exponef#3); and
r(t)=0. (3.3  amacroscopic level, related to quantities averaged over a set
of trajectories, such as diffusion coefficients or probability
Let us definer= (e coslp) *r§, which will appear to be a distributions of the particle positions, which determine the
typical falling time of the particle. Using E@3.20, we ob-  transport properties of the system. Although the proof of the
tain that existence of a probability distribution, and of robust macro-
scopic quantities from the dynamics, is a difficult problem,
only in a few special models can this be done rigorously; a
numerical approach is useful in order to investigate the av-
eraged properties of the system. However, it is necessary to
It implies that t=2r; otherwise, we would get testthe statistical stability of the macroscopic quantities, for
|u(f)—u0|<r§/24s1, and using Eq(3.23, we would con- instance, verifying that the macroscopic properties are inde-

; : . : pendent of the details of the particle initial positions.
gﬁﬁm Eq.(3.3. Equations(3.4) and (3.23 immediately We showed in the preceding section that the singularity of

the flow at the symmetry axis influences the neighboring
[T A o particles trajectories, leading to collapse in finite time. In
vis2r, r(h)~a(t)=yrg—2e codlt. (3.5 particular, one may ask if the long time properties of the
) ) . transport are also dominated by the cylindrical geometry of
It is easy to verify thal(7) =0 anda(7r)=—c. There-  he stochastic web, for instance, if the totality of particles are
fore, the particle reaches the axis 0 in a finite time(of the  gh50rbed at the origiin a finite or infinite time. In order to
order of the falling timer) with an infinite speed. Of course, characterize the role of this singularity on the transport, we
the particle never returns Q. _ _ define the probabilitye(t; ), for a particle starting at the
~ The way the pa3rt|cle reaches the axis depends on the ingyigin, not to be returned before a given timé his quantity
tial conditions. Ifrg<uo, the particle spirals down, accord- s directly obtained numerically by computing the number of
ing to the formulas ¢=taruolnr(t)/rotdo and particlesN(t) present in the system at timewith respect to
lim,_ or¢=cc. This is the case drawn in Fig. 4. If, on the the total number of particlesl [when this number is large
contrary,rg>u0, the spiral ends at a particular direction enough,N(t)/N—F].
d=(7). A distribution of particles is initially given around=0
Besides, it is clear that such a behavior does not depenand sing)=+1, where the flow is essentially of the source
on the value oh (the order of the symmetyyMore gener- type. Then, the trajectories are followed, and if a given par-
ally the hypothesisHl), for generaln, would be ticle reaches the origita sink in the symmetry axisits
return time is computed. The advantage of initializing the
ro<e™ system in such a way is that the long time evolution is inde-

rg+o(r8)t

<t —Ug|<
Vis<t, |u(t)—ug| 18

(3.4
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FIG. 5. Temporal evolution of the return probability distribution ~ FIG. 6. Temporal evolution of the radial megop) and stan-
in logarithmic scales. The average slope of the curve in the interdard deviation(bottom of the Beltrami flow. Top: Inf)/In(t) as a
mediate regime, 1664t<11 900(between the vertical lines and  function of time. Bottom: In¢)/In(t) as a function of time. Param-
b), is —0.52 and is represented by the straight line in the plot. Foreters aree=0.2, N=2048,t;=25 000.
times 20 006&t<25 000 (between the vertical lines andd), the
slope is about —0.40. Parameters aree=0.2, N=2048,  creasing function of). Since the particle transport scaling
£1=25000. properties are essentially determined by the topological

structure of the web, this behavior demonstrates at least in a
pendent of the initial state and the return to the origin processtatistical sense that the stochastic web topology is fixed by
is properly characterized. This would not be the case if thehe conditione>0. This behavior is similar to the transport
particles were started, for example, near the first circulain Hamiltonian systemfl7,16, for example, in the standard
separatrix. In such a case it is difficult to define a stablemap, where the diffusion law is the same for different values
statistical quantity describing the process of concentrationf the stochastic parameter, and only the diffusion coefficient
near the origin, which may depend on the initial distance. depends on the strength of the perturbation.

In Fig. 5 we show the fraction of particlgs(t) not re- The departure from the normal Brownian motion may be
turned to the origin as a function of time in a log-log plot, further investigated using the long time behavior of the mean
computed from 2048 trajectories ard=0.2. We observe radial positionm(t) and its standard deviatiom(t). More-
that, initially, F(t) is like a staircase function: due to the over, these quantities, which are the first two moments of the
strong correlation of neighboring particle trajectories, theseadial probability distribution, describe the dispersion of an
particles reach the origin in clusters. At later timesinitially concentrated population of particles near the axis,
(t>1664), the functiorF(t) becomes smoother, and slowly and, in particular, their asymptotics may account for the pos-
decreases front(1664)~0.39, to a value ofF equal to sibility of escaping. The mean and standard deviations for a
0.15 at the final computed time= 25 000). For intermedi- system with absorption at the origin are defined by
ate times (1664 t<11 900) F(t)~t~ %52 up to the fluctua-

tions and the system behaves almost as a Brownian motion N(t)

with F(t)~t~ Y2 This may be explained by the fact that the m(t)=—— >, ry(t), (4.2
particles explored essentially the origin neighborhood, and N(t) p=1

long time effects depending on the global geometry of the

web cannot yet be manifested. At later times, a change of N(t)

regime appears, and we observe that the slope of the curve in o2(t)= —— >, [rg(t)— m2(t)], 4.2
Fig. 5 tends to decrease. In the range 20006 25 000, the N(t) p=1

average exponent is about 0.40. The long time behavior of

F(t) deviates from a Brownian law, but due to the smallwherer y(t) is the radial position of th@th particle at time

number of particles remaining at such later times, the statis- not returned to the origin. In this waw(t) ando(t) reflect

tics become unreliable in determining the behavior. We notghe actual particle diffusion, and the measure is not biased by

that F(t) monotonically decreases, but no asymptotic valuehe growing number of particles absorbed at0.

strictly larger than zero is reached. If this were the case we We used the same kind of initial conditions to measure

would conclude that a fraction of particles may escape froom(t) and o(t) as we do for measuring(t). After a short

the axis of symmetry, but the numerical simulations are notransitory regime, an asymptotic regime sets in, with stable

able to provide an answer to this question. statistical properties. We observe in Fig. 6, where
We verified numerically tha¢ plays, in fact, the role of a In(m)/In(t) and In@)/In(t) are plotted as functions df to

normalization time parameter. An appropriate scaling of thedetermine the exponents, that the radial mean and standard

time axis in the fornt— g(e)t lets the distribution probabil- deviations follow power laws at long times with exponents

ity F(t) be invariant(F(t;e)=F[g(e)t], whereg is a de- about 1/3 and 1/4, respectively,



55 CHAQOTIC ADVECTION AND TRANSPORT IN HELICAL ... 5593

m(t)~1°3, (4.33  this model. We assume that a test particle leaves the center of
the web and then we compute the probability of the first
o(t)~1928 (4.3p  return to the origin.

It is worth noting that when a particle arrives for the first
The temporal evolution of(t) is aimost independent of the time at a radial distance, (it turns around the circle of
actual value ofe and m(t) is an increasing function oé.  radiusry), the probability that the particle stays at such a
However, asymptotically, the characteristic exponents (0.38listance for {+ 1) steps is (2/3X1/3)', and the waiting time
and 0.26) do not depend an which is clearly consistent is
with the scaling property of. . .

We observe that the mean exponent is larger than the — (2)\2 ) 1)'

standard deviation exponent, suggesting that the distribution T=l3 240 (i+1) 3/ =L (5.3)
of particles is advected far from the origin while slowly
spreading. The relative small standard. deviation exponent, | et us denoteP_ ., , the probability of the particle arriv-
small with respect to the normal diffusion and also to thejng at a hyperbolic point from the bottom moving up,
radial mean exponent, can be mainly related to two effectshe one to move up coming from the top, and similar defini-
First, the absorption of particles at the origin tends to reducgons for P, _ andP__. It is easy to verify[18] that the
o(t): some of the particles located far from the mean positransition matrix probabilityP is
tion disappear, diminishing by way of their dispersion. Sec-
ond, the radial structure of the separatrices, and the related
growth of the cell size with the distance to the origin, con- ( p p +i

tribute to the increase of the circulation time of particles in
the farther cells. More precisely, we observe, using the nu-
merical integration of trajectories starting at different dis-
tances from the origin, that the particle’s time to turn around
a cell is proportional to the radial distance of the cell. Theand in the limitn—o,
proportionality coefficientr typically varies between 1.1 and

1.8, depending on how deep the particle orbit is situated in . 111
the cell(see Fig. 3 In a statistical model below, we will take P~ "1 1)
a=1.4. The geometry of the web imposes, therefore, a wait-

ing time (the time necessary to turn around one)cgtbpor-  This means that for long times, such a model is, in fact,
tional to the distance, whose main effect is to forbid theequivaient to a classical random walk on a liftee radial

particles to spread out far from the radial me(m‘e farther aXIS) with an absorbing barrier in=0, a constant Waiting

(5.2
P, Piy

Wk WN
WIN Wk

(5.3

they move, the longer their waiting time).is time (equal to 1), and a probability 1/2 of going up or down,
independently, to the radial position. Therefore, we obtain a
V. RANDOM WALK MODEL radial mean and standard deviation, both increasing asymp-

_ totically ast2. This result is incompatible with the charac-
We construct a discrete model, based on an average oVgliciic exponents of the Beltrami flo.3).

the z coordinate, of the particle probability distribution. This  The main reason this simple model fails is that it does not
is justified by the fact tha is almost constant on large time take into account that the time spent in a cell is approxi-
scales, so that the radial trajectory is slightly modified by itsmately, as we already indicated, proportional to the distance
z value (except wherr approaches 0). Therefore, we just of the cell from the centeT =T(r). In the frame of a dis-

consider the projection of the trajectories on the#) plane  crete model,T must be an integer number and we take

and we make the approximation that this projection follows

the geometry generated by the separatricdd pfWe obtain T(r)=E(ar), (5.9

a lattice in the plane with lines convergent to the center and

concentric circles, the cross points of the separatrices beinghereE(x) denotes the integer part fand a~1.4, as we

the hyperbolic points oH, (2.10. These hyperbolic points noted before. After this time, the particle can freely leave this

(except for the closest ones from the axisQ) are regularly  position with a given probability.

arranged along the radial axis, the distance between two suc- We denote byP(r,t|n), the conditional probability of a

cessive sets of hyperbolic pointsf equal radial distange particle being at the radial distanceat timet, knowing that

being approximately constant and equalto Therefore, in it is there sincen time units(the last radial transition was at

this model, the radial distance is discrete, the unit distancémet—n). Each time a particle is at a transition time, it has

being the distance between two successive sets of hyperbolrobabilities p_ ,pg,p; of going up, staying at the same

points. radial position again for a tim&(r) [for po=0 the particle
The simplest model that might reproduce the main feawaits exactlyT(r) atr], or going down. Timen is therefore

tures of the dynamical system is one where the particles arg discrete quantity varying from 0 6(r). Finally, we note,

random walkers on the web, with probability 1/3 of turning P(r,t)=P(r,t|0) in order to simplify the formulas. In terms

left or right or continuing straight on each time they arrive atof probabilities, the dynamics of the discrete model of the

a hyperbolic point; the time spent going from one hyperbolicBeltrami flow is defined by

point to another one is constant and independent of their

position on the web. Let us analyze the radial properties of Vr=1,1sn<T(r),P(r,tin)=P(r,t—1|n—1), (5.53




5594 O. AGULLO, A. D. VERGA, AND G. M. ZASLAVSKY 55

0.02

0.018

0.018

In{(m)/In(t)

0.014

0.012

o ¢
b

t x 10* ® 001 .
’ 0.008 B
= | 0.006
£ _
@ 0.004 -
£
0.5} : v : : v ‘ 1 0.002 1
04 ; i ; i i i ; i H o . ‘
0 1 2 s 4 5 6 7 8 9 10 © 140 160 180 200
t x 10*
FIG. 7. Temporal evolution of the radial me&op) and stan- FIG. 8. Radial probability distributiorG(r,t) of the discrete

dard deviation(bottom) of the discrete probabilistic model. Top: model for different values of the waiting transition probability at
In(m)/In(t) as a function of time. Bottom: lm{/In(t) as a function of  t=100 000. Dashed linepy=0; solid line: po=1/5; and dotted
time. Parameters are p(,py,p-)=(0.4,0.2,0.4), a=1.4, line: po=1/3. The other transition probabilities ape =p. .

t{=100 000.

dom, the particle is either trapped in a cell or has a change of

Vr=2 P(r,t)=p_P(r—1t—1[T(r—1)) cone, as is observed in Fig. 3.

To compute the first probability momen(Big. 7), we do
+poP(r,t=1[T(r)) not use the statistics over the particle random walks, but we
+pLP(r+1t—1|T(r+1)), (5.5h directly integrate the exact probability distribution evolution,

using the algorithm defined by Eq&.5). Although there is
with no direct relation between the continuous time scale of the
system and the discrete one of the model, we can see in Fig.
p-+potp+=1, (5.59 7 that the characteristic exponents of the mean and the stan-
dard deviations are in very good agreement with the values
observed in the original dynamical system. The transition of
the probabilistic model differs from the one of the Beltrami
_ _ _ flow because of its discrete nature, which cannot reproduce
P(OD=p;PALI=1[T())+P(OL-1), (559 the details of the correlations in the absorbing region ob-
P(11)=poP(Lt—1|T(1)+p.P2t—1|T(2)). (5.50 served fort=<1664. This results in a smoother convergence
to an asymptotic regime. We point out that the approach of

We can now defin&(r,t) the probability for a particle to be the first two moments to this asymptotic regime is similar in

at the radial distance at the timet both the dynamical and the probabilistic systems.

The model is sensitive to the choice of parameters

and the absorption condition in=0 (the boundary condi-
tion) is given by

o o P_, Po. P+ . However, provided that we take, smaller
G(r,t)=r]§=:0 P(r,t|n)=n§=:0 P(r,t—n). (56 thanp_ andp. , the asymptotics have similar shapes and
characteristic exponents. For instance, fqv_(pg,p.)
The probability normalization condition is written as =(0.5,0,0.5), we observe that the exponent of the standard
deviation is 0.27 and, at the same time, the exponent of the
_ mean is 0.358. On the other hand, the choice of an equiprob-
V=0, G(r.=1. G7 ability distribution @_.po.p.)=(1/3,1/3,1/3) gives 0.346

and 0.256.

To compare with the data of the dynamical system, in the We also computed the return-to-the-origin probability
model we concentrate the initial probability distribution 1—F(t) for the discrete model and found the asymptotic
aroundr =0 (att=0). The values op_, pg, p, chosen behaviorF(t)~t~ 3 This long time power law implies that
are 0.4, 0.2, and 0.4, respectively. The probabilitiesthe probability of a test particle being absorbed in an infinite
p_, p. are greater thap, to reflect the fact that crossing a time, is one. The power law is well defined and extends over
circular separatrix is more probable than crossing a radianany decades in time. This shows, on the other hand, that
one, or staying for a long time around the same cplf ( the numerical simulations had not fully reached the
makes no distinction between these last two processes, fasymptotic regime, even if the first two moments of the prob-
which the radial position remains the sami€he trajectories ability distribution of particles did.
in the web are essentially composed of radial motions in  One interesting point is that the model allows us to com-
fixed cones e[ — w/3,7/3]+2kw/3, with generally no pute the exact probability distribution at any time, in contrast
more than one rotation in each new cell visited. More selto the dynamical system which is limited by the number of
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particles not absorbed at the axis. In Fig. 8, the probability
distributions are plotted when most of the particlebout
96.5%) are returned to the axiwhich corresponds to a time
equal to 100000) for different values of the set
(p-,pPo,ps+)- It is logically observed that when increasing
po, the mean and the standard deviations both decrease.
More important, the non-Gaussian nature of the stochastic
process appears clearly in the behavior of the probability
distribution for large values of. For a Gaussian process,
even with absorption, one expects a decay of the probability
asO[ exp(—ar?)] (the time is fixed; yet we find that for large

r the actual probability decays, first, much more slowly than
a Gaussian, and then changes progressively to a regime to
decay faster than a Gaussian for rare events.

It is interesting to investigate the continuous limit of the
discrete model in order to underscore the non-Markovian na-
ture of the stochastic process. We make the simplifying as- )
sumption that p_,po,p.)=(1/2,0,1/2), taking advantage  FIG. 9. Poincaresectionz=0 mod 2, of N=1024 particles
of the weak dependence on the shape of the probability didnitially located around one separatrix, showing the structure of the
tribution and on the values of the characteristic exponents oftochastic layers for a Beltrami flow having a monopolar contribu-
the discrete model. Let us denatéhe unit of time anda the  tion with Co=1. Circles of radius 3, 6, and 9 as well as radial lines
unit of length; in the continuous limit both tend to zero. We With angle Xa/6 (k=0,1,....5) areplotted. Parameters are

f(r,t;a,7)=P(r+a,t—r—T(r+a))—P(r,t—7), G. To be complete, we need to add absorption and normal-
(5.9 ization conditions. We denotB(t), the probability of the
particle being at =0 at the timet. The absorption condition
and with the help of Eq945.59 and(5.5h), we obtain is written,

2[P(r,t)=P(r,t—7)]=f(r,t;a,7)+f(r,t;—a,r). d 1
(5.9 aPo(t)= 5 limG(r,t), (5.19
r—0
In the limit a and 7 tending to zero, a Taylor development L .
gives T 9 y P and the normalization condition becomes

2 +oo
27%P(f1t)+0(fz)=az%f<r,t;o,f)+0(a3). F’o(t)+fO G(r,tydr=1. (5.19

J
(5.10 I . L
We note that the derivation of the continuous equation is

To get a nontrivial limit, we pua?/27=D=const and using independent of the precise form {r).

(5.8 we obtain

) VI. CONCLUSIONS

%P(r,t)= D %[P(r,t—T(r))], r>0. (5.1) In this paper we studied the advection and transport of test
particles in a helical Beltrami flow and showed the stochastic
Rature of its streamlines. We analytically demonstrate that,
under certain conditions, there is a collapse to the origin
twhere the particles may be absorbed. This effect has impor-
tant consequences in the statistical properties of the system
and, in particular, the special topology of the stochastic web
determines the behavior of the transport. We introduced sev-

We obtain a non-Markovian stochastic process satisfying
nonlocal diffusion equation, witld being the diffusion co-
efficient, with memory effects depending on the position. |
is now straightforward to obtain the continuous limit of Eq.
(5.6) and G is then given by

t eral quantities to describe this transport, such as the return

G(H)Zf P(r,u)du. (5.12  probability distribution and the first moments, mean and

t=Tn standard deviations of the radial probability distribution. Nu-

In fact, P andG are linked by a local relation, merical integration of the trajectories allowed us to show that
the transport is subdiffusive and that the long time behavior

d 5? 3 of the return probability distribution can be associated with a
S Pr)—D-mP(r,)=-D->-G(r,t), r>0. non-Gaussian random process. In particular, we obtained

(5.13  anomalous exponents for the power laws associated with
both the mean and the standard deviations.
The right hand side of this last equation takes into account In order to verify these results, we proposed a discrete
the non-Markovian part of the diffusion process and correprobabilistic model based on a random walk on the separa-
sponds to the local temporal variation of the diffusion oftrix lattice with waiting times proportional to the distance to
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the origin. We demonstrated that taking this waiting timeflow having two components: the Bessel of order 3 plus a
constant does not suffice to reproduce the Beltrami flow, andhonopolar contributiorfa Bessel of order)0 The monopolar
that, in fact, this case reduces to a normal Gaussian procederm completely modify the geometry of the stochastic web,
The model turned out to be, in spite of its relative simplicity, in particular, eliminating the separatrices converging toward
complete enough to explain the observed phenomenology dhe origin. One consequence of the topological change is that
the transport in the system. the transport becomes essentially in the angular direction
Finally, we derived the continuous limit of the discrete rather than in the radial one.
probabilistic model and found that it reduces to a nonlocal
diffusion equation with unsteady boundary conditions. This
model has interesting properties and can be used as an ex-
ample of the non-Markovian stochastic process, with the ad- We thank X. Leoncini and D. Benisti for useful discus-
vantage that its discrete version is known and easily computions. Part of this work was carried out at the Equipe Tur-
able numerically. bulence Plasma. One of u$s.M.Z) was supported by
The symmetry we choose for the helical Beltrami flow, the U.S. Department of the Navy, Grant No. N00014-96-1-
with only one Bessel functiofin our case the one of order 0055, and the U.S. Department of Energy, Grant No. DE-
3), is fundamental in determining the behavior of the systemFG02-92ER54184. The numerical computations were per-
It is precisely this(discrete cylindrical symmetry which is formed at the Centre de Calcul §enal of the Institut
essential in the absorption process. To illustrate this point wéléditerranean de Technologi¢Region Provence-Alpes-
computed the Poincasection(Fig. 9) of a helical Beltrami  Cote d’Azur).
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